Generalized Orthogonal Stability of Some Functional Equations
نویسنده
چکیده
We deal with a conditional functional inequality x ⊥ y ⇒ ‖ f (x + y)− f (x)− f (y) ‖ ≤ (‖ x‖ + ‖ y‖ ), where ⊥ is a given orthogonality relation, is a given nonnegative number, and p is a given real number. Under suitable assumptions, we prove that any solution f of the above inequality has to be uniformly close to an orthogonally additive mapping g, that is, satisfying the condition x ⊥ y ⇒ g(x+ y)= g(x) + g(y). In the sequel, we deal with some other functional inequalities and we also present some applications and generalizations of the first result.
منابع مشابه
Orthogonal stability of mixed type additive and cubic functional equations
In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of Ratz.
متن کاملCubic-quartic functional equations in fuzzy normed spaces
In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation
متن کاملA fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملOn Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...
متن کاملSystem of AQC functional equations in non-Archimedean normed spaces
In 1897, Hensel introduced a normed space which does not have the Archimedean property. During the last three decades theory of non--Archimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, p--adic strings and superstrings. In this paper, we prove the generalized Hyers--Ulam--Rassias stability for a ...
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کامل